Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Mol Graph Model ; 118: 108345, 2023 01.
Article in English | MEDLINE | ID: covidwho-2239079

ABSTRACT

Human norovirus (HuNoV) causes acute viral gastroenteritis in all age groups, and dehydration and severe diarrhea in the elderly. The World Health Organization reports ∼1.45 million deaths from acute gastroenteritis annually in the world. Rupintrivir, an inhibitory medicine against the human rhinovirus C3 protease, has been reported to inhibit HuNoV 3C protease. However, several HuNoV 3C protease mutations have been revealed to reduce the susceptibility of HuNoV to rupintrivir. The structural details behind rupintrivir-resistance of these single-point mutations (A105V and I109V) are not still clear. Hence, in this study, a combination of computational techniques were used to determine the rupintrivir-resistance mechanism and to propose an inhibitor against wild-type and mutant HuNoV 3C protease through structure-based virtual screening. Dynamic structural results indicated the unstable binding of rupintrivir at the cleft binding site of the wild-type and mutant 3C proteases, leading to its detachment. Our findings presented that the domain II of the HuNoV 3C protease had a critical role in binding of inhibitory molecules. Binding energy computations, steered molecular dynamics and umbrella sampling simulations confirmed that amentoflavone, the novel suggested inhibitor, strongly binds to the cleft site of all protease models and has a good structural stability in the complex system along the molecular dynamic simulations. Our in silico study proposed the selected compound as a potential inhibitor against the HuNoV 3C protease. However, additional experimental and clinical studies are required to corroborate the therapeutic efficacy of the compound.


Subject(s)
Antiviral Agents , Norovirus , Protease Inhibitors , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Gastroenteritis/drug therapy , Gastroenteritis/virology , Norovirus/drug effects , Norovirus/metabolism , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry
2.
Viruses ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1542802

ABSTRACT

Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Norovirus/physiology , Antiviral Agents , COVID-19/epidemiology , COVID-19/prevention & control , Caliciviridae Infections/microbiology , Caliciviridae Infections/virology , Gastroenteritis/microbiology , Gastroenteritis/virology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Norovirus/genetics , Norovirus/immunology , SARS-CoV-2 , Viral Vaccines/immunology
3.
Viruses ; 12(8)2020 08 18.
Article in English | MEDLINE | ID: covidwho-1453290

ABSTRACT

Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus-virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus-virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus-virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.


Subject(s)
Coinfection/virology , Gastroenteritis/virology , Virus Diseases/physiopathology , Viruses/classification , Viruses/pathogenicity , Animals , Asymptomatic Infections , Disease Models, Animal , Feces/virology , Humans , Intestines/virology , Mice , Primates
4.
J Med Virol ; 93(4): 2543-2547, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217399

ABSTRACT

We described the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in stool samples from patients presenting only acute gastroenteritis (AGE) symptoms. From January to July 2020, 121 AGE stool samples were screened by quantitative reverse-transcription polymerase chain reaction. We detected SARS-CoV-2 in 27.5% of samples received during the epidemic period. No infectious viruses were observed in Vero E6 cells.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Gastroenteritis/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adult , Brazil/epidemiology , COVID-19/epidemiology , COVID-19 Testing , Feces/virology , Female , Humans , Infant , Male , Reverse Transcriptase Polymerase Chain Reaction/methods , Young Adult
5.
Nat Rev Gastroenterol Hepatol ; 18(4): 269-283, 2021 04.
Article in English | MEDLINE | ID: covidwho-1085424

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.


Subject(s)
COVID-19/physiopathology , Diarrhea/physiopathology , Dysbiosis/physiopathology , Gastroenteritis/physiopathology , Gastrointestinal Microbiome , Nausea/physiopathology , Vomiting/physiopathology , Abdominal Pain/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anorexia/physiopathology , COVID-19/transmission , Cell Line , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Feces/chemistry , Gastroenteritis/virology , Humans , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Leukocyte L1 Antigen Complex/metabolism , Organoids , RNA, Viral , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Viral Load , Virus Shedding
6.
Commun Dis Intell (2018) ; 452021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1080878

ABSTRACT

ABSTRACT: Significant reductions in the incidence of enteroviruses and noroviruses, both transmitted primarily by the faecal-oral route, were noted in 2020 compared to the previous decade, in Victoria, Australia. The enterovirus specimen positivity rate was reduced by 84.2% in 2020, while the norovirus outbreak positivity rate declined by 49.0%. The most likely explanation for these reductions is the concurrence of social restrictions, physical distancing, personal hygiene awareness and international and domestic border closures in response to the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Caliciviridae Infections/virology , Enterovirus , Gastroenteritis/epidemiology , Gastroenteritis/virology , Norovirus , Caliciviridae Infections/epidemiology , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Humans , Incidence , SARS-CoV-2 , Victoria/epidemiology
7.
Gastroenterology ; 160(5): 1647-1661, 2021 04.
Article in English | MEDLINE | ID: covidwho-1065985

ABSTRACT

BACKGROUND & AIMS: Gastrointestinal (GI) manifestations have been increasingly reported in patients with coronavirus disease 2019 (COVID-19). However, the roles of the GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We investigated how the GI tract is involved in SARS-CoV-2 infection to elucidate the pathogenesis of COVID-19. METHODS: Our previously established nonhuman primate (NHP) model of COVID-19 was modified in this study to test our hypothesis. Rhesus monkeys were infected with an intragastric or intranasal challenge with SARS-CoV-2. Clinical signs were recorded after infection. Viral genomic RNA was quantified by quantitative reverse transcription polymerase chain reaction. Host responses to SARS-CoV-2 infection were evaluated by examining inflammatory cytokines, macrophages, histopathology, and mucin barrier integrity. RESULTS: Intranasal inoculation with SARS-CoV-2 led to infections and pathologic changes not only in respiratory tissues but also in digestive tissues. Expectedly, intragastric inoculation with SARS-CoV-2 resulted in the productive infection of digestive tissues and inflammation in both the lung and digestive tissues. Inflammatory cytokines were induced by both types of inoculation with SARS-CoV-2, consistent with the increased expression of CD68. Immunohistochemistry and Alcian blue/periodic acid-Schiff staining showed decreased Ki67, increased cleaved caspase 3, and decreased numbers of mucin-containing goblet cells, suggesting that the inflammation induced by these 2 types of inoculation with SARS-CoV-2 impaired the GI barrier and caused severe infections. CONCLUSIONS: Both intranasal and intragastric inoculation with SARS-CoV-2 caused pneumonia and GI dysfunction in our rhesus monkey model. Inflammatory cytokines are possible connections for the pathogenesis of SARS-CoV-2 between the respiratory and digestive systems.


Subject(s)
COVID-19/transmission , Gastroenteritis/pathology , Gastrointestinal Tract/pathology , Lung/pathology , Animals , Bronchi/metabolism , Bronchi/pathology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19 Nucleic Acid Testing , Caspase 3/metabolism , Cytokines/immunology , Disease Models, Animal , Gastric Mucosa , Gastroenteritis/metabolism , Gastroenteritis/virology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Goblet Cells/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Ki-67 Antigen/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Macaca mulatta , Nasal Mucosa , RNA, Viral/isolation & purification , Random Allocation , Rectum/metabolism , Rectum/pathology , SARS-CoV-2 , Trachea/metabolism , Trachea/pathology
8.
J Med Virol ; 92(10): 1834-1844, 2020 10.
Article in English | MEDLINE | ID: covidwho-935120

ABSTRACT

Coronaviruses have long been studied in both human and veterinary fields. Whereas the initial detection of endemic human respiratory coronaviruses was problematic, detection of these and newly discovered human coronaviruses has been greatly facilitated with major advances in the laboratory. Nevertheless, technological factors can affect the accuracy and timeliness of virus detection. Many human coronaviruses can be variably found in stool samples. All human coronaviruses have been variably associated with symptoms of gastroenteritis. Coronaviruses can occasionally be cultured from enteric specimens, but most detection is accomplished with genetic amplification technologies. Excretion of viral RNA in stool can extend for a prolonged period. Culture-positive stool samples have been found to exceed a fourteen day period after onset of infection for some coronaviruses. Virus can also sometimes be cultured from patients' respiratory samples during the late incubation period. Relatively asymptomatic patients may excrete virus. Both viable and nonviable virus can be found in the immediate environment of the patient, the health care worker, and less often the public. These lessons from the past study of animal and human coronaviruses can be extended to presumptions for severe acute respiratory syndrome coronavirus 2. Already, the early reports from the coronavirus disease-2019 pandemic are confirming some concerns. These data have the cumulative potential to cause us to rethink some current and common public health and infection control strategies.


Subject(s)
COVID-19 , Coronavirus Infections/complications , Gastrointestinal Diseases/virology , Animals , Gastroenteritis/virology , Humans , SARS-CoV-2
9.
Gastroenterology ; 160(1): 39-46, 2021 01.
Article in English | MEDLINE | ID: covidwho-936157

ABSTRACT

The role of angiotensin converting enzyme 2 has expanded from regulating the renin angiotensin system to regulating intestinal amino acid homeostasis and the gut microbiome. Recently, angiotensin converting enzyme 2 was identified as a primary receptor for severe acute respiratory syndrome coronaviruses 1 and 2 being expressed in multiple tissues including the luminal surface of the gut. In this brief perspective, we examine the role of angiotensin converting enzyme 2 as the receptor for severe acute respiratory syndrome coronavirus 2 and the impact of coronavirus disease 19 infection on the gut microbiome and on the gut epithelium.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Gastroenteritis/enzymology , Gastrointestinal Microbiome , Intestinal Mucosa/enzymology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/microbiology , COVID-19/virology , Feces/microbiology , Feces/virology , Gastroenteritis/drug therapy , Gastroenteritis/microbiology , Gastroenteritis/virology , Gastrointestinal Microbiome/drug effects , Host-Pathogen Interactions , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Renin-Angiotensin System , SARS-CoV-2/drug effects , Virus Internalization , COVID-19 Drug Treatment
10.
Am J Nephrol ; 51(5): 337-342, 2020.
Article in English | MEDLINE | ID: covidwho-19673

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) is a highly infectious, rapidly spreading viral disease with an alarming case fatality rate up to 5%. The risk factors for severe presentations are concentrated in patients with chronic kidney disease, particularly patients with end-stage renal disease (ESRD) who are dialysis dependent. We report the first US case of a 56-year-old nondiabetic male with ESRD secondary to IgA nephropathy undergoing thrice-weekly maintenance hemodialysis for 3 years, who developed COVID-19 infection. He has hypertension controlled with angiotensin receptor blocker losartan 100 mg/day and coronary artery disease status-post stent placement. During the first 5 days of his febrile disease, he presented to an urgent care, 3 emergency rooms, 1 cardiology clinic, and 2 dialysis centers in California and Utah. During this interval, he reported nausea, vomiting, diarrhea, and low-grade fevers but was not suspected of COVID-19 infection until he developed respiratory symptoms and was admitted to the hospital. Imaging studies upon admission were consistent with bilateral interstitial pneumonia. He was placed in droplet-eye precautions while awaiting COVID-19 test results. Within the first 24 h, he deteriorated quickly and developed acute respiratory distress syndrome (ARDS), requiring intubation and increasing respiratory support. Losartan was withheld due to hypotension and septic shock. COVID-19 was reported positive on hospital day 3. He remained in critical condition being treated with hydroxychloroquine and tocilizumab in addition to the standard medical management for septic shock and ARDS. Our case is unique in its atypical initial presentation and highlights the importance of early testing.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Gastroenteritis/virology , Kidney Failure, Chronic/complications , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/diagnostic imaging , Humans , Kidney Failure, Chronic/therapy , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Renal Dialysis , SARS-CoV-2 , Tomography, X-Ray Computed , Travel-Related Illness
SELECTION OF CITATIONS
SEARCH DETAIL